skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferreira, Celso"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ### Overview This dataset contains simulated significant wave height data generated from the WaveWatch III model run from 2020 up to 2070. It was produced to predict future environmental hazards threatening maritime navigation within the Arctic. Four unique simulations were produced using different Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models' wind and sea ice projections along the shared socioeconomic pathways 5-8.5 (SSP5-8.5) future emissions scenario. The climate models used include: CNRM-CM6-1-HR, EC-Earth3, MPI-ESM1-2-HR, and MRI-ESM2-0. For each climate model, data is organized into yearly files written to NetCDF format. The data is contained on a spatially-varying unstructured triangular mesh which spans from 50° North (N) to 89.9°N and 180° West (W) to 180° East (E). The 'hs' variable presents the significant wave height (highest one thirds of wave heights) to occur for each node during the simulation in 6 hour intervals. ### Access Data files can be accessed via: [https://arcticdata.io/data/10.18739/A2ST7DZ74/](https://arcticdata.io/data/10.18739/A2ST7DZ74/) 
    more » « less
  2. Abstract Declining Arctic sea ice over recent decades has been linked to growth in coastal hazards affecting the Alaskan Arctic. In this study, climate model projections of sea ice are utilized in the simulation of an extratropical cyclone to quantify how future changes in seasonal ice coverage could affect coastal waves caused by this extreme event. All future scenarios and decades show an increase in coastal wave heights, demonstrating how an extended season of open water in the Chukchi and Beaufort Seas could expose Alaskan Arctic shorelines to wave hazards resulting from such a storm event for an additional winter month by 2050 and up to three additional months by 2070 depending on climate pathway. Additionally, for the Beaufort coastal region, future scenarios agree that a coastal wave saturation limit is reached during the sea ice minimum, where historically sea ice would provide a degree of protection throughout the year. 
    more » « less
  3. Ping Wang, Elizabeth Royer (Ed.)
    Arctic storm surge events have a distinct character, and their impact on the coast is unique compared to a non-Arctic event. On the one hand, Arctic peak wind speeds rarely reach hurricane strength (74 mph, 64 knots or greater). And pressure drops associated with Arctic storms are small compared to ones in the tropics. More importantly, the impact of an atmospheric storm on the ocean and on the coast is entirely dependent on the season. If a large storm strikes during the winter or when the ocean is ice-covered, the storm will generate negligible waves and surge, and it will not generate erosion or coastal flooding. On the other hand, if a large storm strikes when the ocean is partially ice-covered (e.g., 50% covered), surge may be enhanced relative to an ice-free ocean, potentially leading to greater coastal flooding. 
    more » « less
  4. null (Ed.)
  5. Abstract Vulnerability of coastal regions to extreme events motivates an operational coupled inland‐coastal modeling strategy focusing on the coastal transition zone (CTZ), an area between the coast and upland river. To tackle this challenge, we propose a top‐down framework for investigating the contribution of different processes to the hydrodynamics of CTZs with various geometrical shapes, different physical properties, and under several forcing conditions. We further propose a novel method, called tidal vanishing point (TVP), for delineating the extent of CTZs through the upland. We demonstrate the applicability of our framework over the United States East and Gulf coasts. We categorize CTZs in the region into three classes, namely, without estuary (direct river–coast connection), triangular‐, and trapezoidal‐shaped estuary. The results show that although semidiurnal tidal constituents are dominant in most cases, diurnal tidal constituents become more prevalent in the river segment as the discharge increases. Also, decreasing the bed roughness value promotes more significant changes in the results than increasing it by the same value. Additionally, the estuary promotes tidal energy attenuation and consequently decreases the reach of tidal signals through the upland. The proposed framework is generic and extensible to any coastal region. 
    more » « less